INVESTIGATION OF ERYTHROMYCIN ADSORPTION INTO CHITOSAN AEROGEL PARTICLES FOR THE DEVELOPMENT OF MEDICAL DEVICES
Abstract
In this paper, the process of supercritical adsorption of erythromycin into chitosan-based aerogel particles was investigated. Aerogel particles with impregnated erythromycin were obtained us-ing supercritical carbon dioxide. The adsorption was carried out with varying temperatures and pro-cess times. During the study, the mass loading of impregnated erythromycin for all obtained samples were determined, X-ray phase analysis of crystalline erythromycin and all samples was performed, and erythromycin release curves were obtained. Based on the results of analytical studies, the parameters of the supercritical adsorption process were selected to achieve the required amount of impregnated antibiotic in the pores of chitosan-based aerogel particles, which have the potential to be used as local hemostatic agents.
References
Menshutina N.V., Uvarova A.A., Mochalova M.S., Lovs-kaya, D.D., Tsygankov P.Y., Gurina O.I., Zubkov E.A. & Abramova O.V. Biopolymer Aerogels as Nasal Drug Delivery Systems. Russian Journal of Physical Chemistry. 2023. V 17. N 7. P. 1507-1518. DOI: 10.1134/S1990793123070163.
Yahya E.B., Alzalouk M.M., Alfallous K.A., Abogmaza A.F. Antibacterial cellulose-based aerogels for wound healing appli-cation: A review. Biomedical Research and Therapy. 2020. V 7. N 10. P. 4032–4040. DOI: 10.15419/bmrat.v7i10.637.
Yahya E.B., Amirul A.A., Khalil A.H.P.S., Olaiya N.G., Iqbal M.O., Jummaat F. Adnan A.S., Adnan A.S. Insights in-to the Role of Biopolymer Aerogel Scaffolds in Tissue Engi-neering and Regenerative Medicine. Polymers. 2021. V 13. N 10. P. 1612. DOI:10.3390/polym13101612.
Noman M.T., Amor N., Ali A., Petrik S., Coufal R., Adach K., Fijalkowski M. Aerogels for Biomedical, Energy and Sens-ing Applications. Gels. 2021. V 7. N 4. P. 264. DOI: 10.3390/ gels7040264.
Roslan H.S., Mustapa A.N., Othman M.A., Him N.R.N., Hanipah S.H., Martín A., Cocero M.J. Characteristics of hy-brid alginate/soy protein isolate wound dressing aerogels dried by supercritical carbon dioxide. Materials Today: Proceedings. 2023. DOI: 10.1016/j.matpr.2023.05.047.
Abdul Khalil H.P.S., Yahya E.B., Jummaat F., Adnan A.S., Olaiya N.G., Rizal S., Abdullah C.K., Pasquini D., Thomas S. Biopolymers based aerogels: A review on revo-lutionary solutions for smart therapeutics delivery. Progress in Materials Science. 2023. V 131. P. 101014. DOI: 10. 1016/j.pmatsci.2022.101014.
Lebedev I.V., Uvarova A.A., Menshutina N.V. Infor-mation-analytical software for developing digital twinsof porous structuresmaterials using a cellullar automata ap-proach. Ros. Khim. Zh. 2023. V 67. N 2. P. 52–58. DOI: 10.6060/rcj.2023672.6.
Shindryaev A.V., Lebedev A.E., Menshutina N.V. Simu-lation of a technological scheme in obtaining heat-insulating materials on the basis of airogels. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V 65. N 12. P. 87–95. DOI: 10.6060/ivkkt.20226512.6646.
Ganesamoorthy R., Vadivel V.K., Kumar R., Kushwaha O.S., Mamane H. Aerogels for water treatment: A review. Journal of Cleaner Production. 2021. V 329. P. 129713. DOI: 10.1016/j.jclepro.2021.129713.
Karamikamkar S., Yalcintas E.P., Haghniaz R., de Barros N.R., Mecwan M., Nasiri R., Davoodi E., Nasrollahi F., Erdem A., Kang H., Lee J., Zhu Y., Ahadian S., Jucaud V., Maleki H., Dokmeci M.R., Kim H.J., Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applica-tions. Advanced Science. 2023. V 10. N 23. P. 2204681. DOI: 10.1002/advs.202370154.11. Wu Y., Wang X., Shen J. Metal oxide aerogels for high-temperature applications. Journal of Sol-Gel Science and Tech-nology. 2023. V 106. N 2. P. 360–380. DOI: 10.1007/s10971-021-05720-w.
Izadi R., Mahinroosta M., Mohammadzadeh K., Ashra-fizadeh S.N. An inclusive review on inorganic gels: classifica-tions, synthesis methods and applications. Journal of the Iranian Chemical Society. 2023. V 20. N 8. P. 1757–1779. DOI: 10.1007/s13738-023-02818-6.
Yun T.G., Kim M.J., Noh J.Y., Song Z., Kim Y., Kang M.J., Park H.H., Pyun J.C. Laser-Assisted Desorp-tion/Ionization Mass Spectrometry Using Nanoporous SiO2 Aerogels for the Diagnosis of Colon Cancer. ACS Applied Nano Materials. 2022. V 5. N 10. P. 14798–14810. DOI: 10.1021/acsanm.2c03084.
Takeshita S., Zhao S., Malfait W. J., Koebel M.M. Chemistry of Chitosan Aerogels: Three-Dimensional Pore Control for Tailored Applications. Angewandte Chemie In-ternational Edition. 2021. V 60. N 18. P. 9828–9851. DOI: 10.1002/anie.202003053.
Zou F., Budtova T. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Car-bohydrate Polymers. 2021. V 266. P. 118130. DOI: 10.1016/j.carbpol.2021.118130. 16. Lovskaya D., Menshutina N., Mochalova M., Nosov A., Grebenyuk A. Chitosan-based aerogel particles as highly effective local hemostatic agents. production process and in vivo evaluations. Polymers. 2020. V 12. N 9. P. 2055. DOI: 10.3390/polym12092055.
Ferreira-Gonçalves T., Constantin C., Neagu M., Reis C. P., Sabri F., Simón-Vázquez R. Safety and efficacy as-sessment of aerogels for biomedical applications. Biomedi-cine & Pharmacotherapy. 2021. V 144. P. 112356. DOI: 10.1016/j.biopha.2021.112356.
Alsmadi M.T.M., Obaidat R.M., Alnaief M., Albiss B.A., Hailat N. Development, In Vitro Characterization, and In Vivo Toxicity Evaluation of Chitosan-Alginate Nanoporous Carriers Loaded with Cisplatin for Lung Cancer Treatment. AAPS PharmSciTech. 2020. V 21. N 5. P. 191. DOI: 10.1208/s12249-020-01735-8.
García-González C.A., , Sosnik A., Kalmár J., De Marco I., Erkey C., Concheiro A., Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. Journal of Controlled Release. 2021. V 332. P. 40–63. DOI: 10.1016/j.jconrel.2021.02.012.
Sivanandan A., Abhilash K. P. Early management of trauma: the golden hour .Current Medical Issues. 2020. V 18. N 1. P. 36 – 39. DOI: 10.4103/cmi.cmi_61_19. 21. Komarova D.S., Demkin K.M., Mochalova M.S., Lovskaya D.D. Investigation of the process of obtaining chitosan-based aerogel particles with impregneated lidocaine hydrochloride for the development of local hemo-static agents with an anesthetic effect. Ros. Khim. Zhs. 2023. V 67. N 2. P. 59-66. DOI: 10.6060/rcj.2023672.7.
Tabernero A., Martin del Valle E., Galán M. Supercriti-cal fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chemical Engineering and Processing: Process Intensification. 2012. V 60. P. 9–25. DOI: 10.1016/j.cep.2012.06.004.
Burgos-Solórzano G.I., Brennecke J.F., Stadtherr M.A. Solubility measurements and modeling of molecules of bio-logical and pharmaceutical interest with supercritical CO2. Fluid Phase Equilibria. 2004. V 220. N 1. P. 57–69. DOI:10.1016/j.fluid.2004.01.036.











