HYBRID MATERIALS OF COPPER PHTHALOCYANINE LIQUID-CRYSTALLINE COMPLEXES WITH CARBON NANOTUBES
Abstract
Hybrid materials were obtained by adsorbing molecules of tetra- and octasubstituted liq-uid-crystalline copper phthalocyanine complexes onto the surface of single-walled carbon nanotubes. The hybrid materials were characterized using electronic absorption spectroscopy, Raman spectrosco-py, and thermogravimetric analysis (TGA). The degree of SWCNT surface functionalization with phthalocyanine molecules was determined. It was demonstrated that increasing the number of substit-uents on the phthalocyanine macrocycle does not affect the degree of functionalization. The adsorp-tion-resistive sensor properties of the obtained hybrid materials toward low concentrations of gaseous ammonia were investigated. The sensor response magnitude of the hybrid materials was found to be 4 times higher than that of the pristine single-walled carbon nanotubes.
References
Martin M., Andre J., Simon J. Influence of dioxygen on the junction properties of metallophthalocyanine based devices. J. Appl. Phys. 1983. N 54. P. 2792–2794. https://doi.org/10.1063.
Shaposhnikov G.P., Kulinich V.P., Maizlish V.E. Modified Phthalocyanines and their Structural Analogues (Koifman O.I., Ed.), M.: Krasand, 2012. 480 p.
Berezin B.D. Coordination compounds on porphirins and phthalocyanines. M.: Nauka, 1987. 280 p.
Usol’tseva N.V., Akopova O.B., Bykova V.V., Smirnova A.I., Pikin S.A. Liqud crystals: discotic mezogens. Iva-novo.: IvSU, 2004. 546 p.
Valli L. Phthalocyanine-based Langmuir-Blodgett films as chemical sensors. Adv. Colloid Interface Sci. 2005. N 116. P. 13–44. https://doi.org/10.1016/j.cis.2005.04.008.
Polyakov M.S. Sensor characteristics of liquid crystal sem-iconductor films of cobalt phthalocyanine. Modern high technologies. Regional application. 2022. N 4. P. 47–54. (In Russian) https://doi.org/10.6060/snt.20227204.0007.
Wang B., Wu Y., Wang X., Chen Z., He C. Copper phthal- ocyanine noncovalent functionalized single-walled carbon nano-tube with enhanced NH3 sensing performance. Sensors Actua-tors B Chem. 2014. N 190. P. 157–164. https://doi.org/10. 1016/j.snb.2013.08.066.
Ivanova V., Klyamer D., Tunç G., Gürbüz F.D., Atilla D., Gürek A.G., Sukhikh A., Basova Т. Films of substitut-ed zinc phthalocyanines as active layers of chemiresistive sensors for ammonia detection. New J. Chem. 2023. N 47. P. 19633–19645. https://doi.org/10.1039/D3NJ03400C.
Banimuslem H., Hassan A., Basova T., Esenpinar A.A., Tuncel S., Durmuş M., Gürek A.G., Ahsen V. Dye-modified carbon nanotubes for the optical detection of amines vapours. Sensors Actuators, B Chem. 2015. N 207. P. 224–234. https://doi.org/10.1016/j.snb.2014.10.046.
Shi J., Luan L., Fang W., Zhao T., Liu W., Cui D. High-sensitive low-temperature NO2 sensor based on Zn (II) phthalocyanine with liquid crystalline properties. Sensors Actuators B Chem. 2014. N 204. P. 218–223. https://doi. org/10.1016/j.snb.2014.07.070.11. Klyamer D., Shao W., Krasnov P., Sukhikh A., Dorovskikh S., Popovetskiy P., Li X., Basova Т. Cobalt and iron phtha-locyanine derivatives: effect of substituents on the structure of thin films and their sensor response to nitric oxide. Biosensors. 2023. N 13. P. 484. https://doi.org/10.3390/ bios1304 0484.
Klyamer D., Shutilov R., Basova T. Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors. 2022. N 22. P. 895. https://doi.org/10.3390/s22030895.
Viricelle J.P., Pauly A., Mazet L., Brunet J., Bouvet M., Varenne C., Pijolat C. Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection. Mater. Sci. Eng. C. 2006. N 26. P. 186–195. https://doi.org/10.1016/j.msec.2005.10.062.
Jakubik W., Urbanczyk M., Maciak E. Metal-free phthalocyanine and palladium sensor structure with a poly-ethylene membrane for hydrogen detection in SAW sys-tems. Sensors Actuators B Chem. 2007. N 127. P. 295–303. https://doi.org/10.1016/j.snb.2007.07.026.
Şenocak A., Ivanova V., Ganesan A., Klyamer D., Basova T., Makhseed S., Demirbas E., Durmuş M. Hybrid mate-rial based on single walled carbon nanotubes and cobalt phthalocyanine bearing sixteen pyrene moieties as a sens-ing layer for hydrogen sulfide detection. Dye. Pigment. 2023. N 209. P. 110903. https://doi.org/10.1016/j.dyepig. 2022.110903.
Basova T.V., Polyakov M.S. Hybrid materials based on carbon nanotubes and polyaromatic molecules: methods of functionali-zation and sensor properties. Macroheterocycles. 2020. N. 13. P. 91–112. https://doi.org/10.6060/mhc200710b.
Wang X., Liu Y., Qiu W., Zhu D. Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials. J. Mater. Chem. 2002. N 12. P. 1636–1639. https://doi.org/10.1039/b201447e.
Kaya E.N., Basova T., Polyakov M., Durmuş M., Kadem B., Hassan A. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: struc-ture and sensing properties. RSC Adv. 2015. N 5. P. 91855–91862. https://doi.org/10.1039/c5ra18697h.
Eguílaz M., Gutiérrez A., Gutierrez F., González-Domín-guez J.M., Ansón-Casaos A., Hernández-Ferrer J., Ferreyra N.F., Martínez M.T., Rivas G. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characteriza-tion and analytical applications for the sensitive quantification of polyphenols. Anal. Chim. Acta. 2016. N 909. P. 51–59. https:/
/doi.org/10.1016/j.aca.2015.12.031.
Polyakov M.S., Ivanova V.N., Basova T.V., Saraev A.A., Köksoy B., Şenocak A., Demirbaş E., Durmuş M. 3D, cova-lent and noncovalent hybrid materials based on 3-phenylcoumarin derivatives and single walled carbon nanotubes as gas sensing layers. Appl. Surf. Sci. 2020. N 504. P. 144276. https://doi.org/10.1016/j.apsusc.2019.144276.
Polyakov M., Ivanova V., Klyamer D., Köksoy B., Şenocak A., Demirbaş E., Durmuş M., Basova T. A Hybrid nano-material based on single walled carbon nanotubes cross-linked via axially substituted silicon (iv) phthalocyanine for chemiresistive sensors. Molecules. 2020. N 25. P. 2073. https:/ /doi.org/10.3390/molecules25092073.
Ivanova V., Klyamer D., Krasnov P., Kaya E.N., Kulu I., Tuncel Kostakoğlu S., Durmuş M., Basova T. Hybrid materi-als based on pyrene-substituted metallo phthalocyanines as sens-ing layers for ammonia detection: Effect of the number of pyrene substituents. Sensors Actuators B Chem. 2023. N 375. P. 132843. https://doi.org/10.1016/j.snb.2022.132843.
Bartelmess J., Ballesteros B., de la Torre G., Kiessling D., Campidelli S., Prato M., Torres T., Guldi D.M. Phthalocy-anine-pyrene conjugates: a powerful approach toward carbonnanotube solar cells. J. Am. Chem. Soc. 2010. N 132. P. 16202–16211. https://doi.org/10.1021/ja107131r.
Ogbodu R.O., Antunes E., Nyokong T. Physicochemical properties of a zinc phthalocyanine – pyrene conjugate ad-sorbed onto single walled carbon nanotubes. Dalt. Trans. 2013. N. 42. P. 10769. https://doi.org/10.1039/c3dt50335f.
Saini R., Mahajan A., Bedi R.K., Aswal D.K., Debnath A.K. Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sen-sors. Sensors Actuators B Chem. 2014. N 198. P. 164–172. https://doi.org/10.1016/j.snb.2014.03.027.
Sukhikh A.S., Polyakov M.S., Klyamer D.D., Gromilov S.A., Basova T. V. A study of the structural features and sensor properties of zinc 2,9,16,23-tetra-tert-butylphthalo-cyanine films. J. Struct. Chem. 2017. N 58. P. 1039–1047. https://doi.org/10.1134/S0022476617050262.
Basova T. V, Çamur M., Esenpinar A.A., Tuncel S., Hassan A., Alexeyev A., Banimuslem H., Durmuş M., Gürek A.G., Ahsen V. Effect of substituents on the orientation of octasubstituted copper(II) phthalocyanine thin films. Synth. Met. 2012. N. 162. P. 735–742. https://doi.org/10.1016/j.synthmet.
Ceyhan T., Altındal A., Özkaya A.R., Çelikbıçak Ö., Salih B., Kemal Erbil M., Bekaroğlu Ö. Synthesis, char-acterization and electrochemical properties of novel metal free and zinc(II) phthalocyanines of ball and clamshell types. Polyhedron. 2007. N 26. P. 4239–4249. https://doi. org/10.1016/j.poly.2007.05.
Durmuş M., Nyokong T. Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron. 2007. N 26. P. 2767–2776. https://doi.org/10.1016/j.poly. 2007.01.018.
Karousis N., Ortiz J., Ohkubo K., Hasobe T., Fukuzumi S., Sastre-Santos Á., Tagmatarchis N. Zinc phthalocyanine-grap-hene hybrid material for energy conversion: synthesis, character-ization, photophysics, and photoelectrochemical cell prepara-tion. J. Phys. Chem. C 2012. N 116. P. 20564–20573. https://doi.org/10.1021/jp305783v.
He D., Peng Y., Yang H., Ma D., Wang Y., Chen K., Chen P., Shi J. Single-wall carbon nanotubes covalently linked with zinc (II) phthalocyanine bearing poly (aryl benzyl ether) dendrit-ic substituents: Synthesis, characterization and photoinduced electron transfer. Dye. Pigment. 2013. N 99. P. 395–401. https:/ /doi.org/10.1016/j.dyepig.2013.05.003.
Shin H.-J., Kim S.M., Yoon S.-M., Benayad A., Kim K.K., Kim S.J., Park H.K., Choi J.-Y., Lee Y.H. Tailoring electron-ic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008. N 130. P. 2062–2066. https://doi.org/10.1021/ja710036e.
Gotovac S., Honda H., Hattori Y., Takahashi K., Kanoh H., Kaneko K. Effect of nanoscale curvature of single-walled car-bon nanotubes on adsorption of polycyclic aromatic hydrocar-bons. Nano Lett. 2007. N 7. P. 583–587. https://doi.org/10. 10.
Zhang Y., Zhang J., Son H., Kong J., Liu Z. Substrate-induced Raman frequency variation for single-walled car-bon nanotubes. J. Am. Chem. Soc. 2005. N 127. P. 17156–17157. https://doi.org/10.1021/ja056793c.
Peng H., Alemany L.B., Margrave J.L., Khabashesku V.N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 2003. N 125. P. 15174–15182. https://doi.org/10.1021/ja037746s.
Поступила в редакцию(Received) 10.04.2025











